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NOMENCLATURE 

C, specific heat capacity : 
El0 the exponential integral : 
k thermal conductivity : 
% index of refraction : 

I 
4,. radtattve heat flux: qr,*, radiative heat flux at 

x=0: 4,,* radiative heat flux at x = s: 
s, solid-liquid interface, “melt line” : 
4 time, integration variable : 
T, temperature : 

Greek symbois 
a, thermal diffusivity : 

s, surface emissivity : 
a. latent heat of freezing: 

PT density : pl, p2 surface relectivities: 
0, Stefan-Boltzmann constant : 
K, absorption coefficient : 
5, optical depth = KX: t0 = ZCS. 

INTRODUCTION 

PROBLEMS of heat transfer in which a medium undergoes a 
phase change during exposure to a thermal environment 
continue to receive appreciable attention. Because of the 
non-linear nature of these problems, most of the solutions 
which have been obtained involved the use of numerical or 
approximate analytical techniques [i-3]. Little study, if 
any, has been devoted to such problems in semi-transparent 
materials in which a substantial contribution to the process 
is due to heat transfer by radiation. Problems of this nature 
arises in the recrystallization of semi-transparent slabs 
accompani~ by a latent heat of recrystallization. Jn the 
present note we employ the integral method to study the 
effect of the radiative beat transfer on the solidification rate 
and on the temperature distribution in the solid phase. It 
is felt that in the ma,jority of cases it is useful to have an 
approximate solution which can describe, however quali- 
tatively, the phenomena under examination. 

ANALYSIS 

The problem considered is the one dimensional solidih- 

cation of a semi-transparent thick homogeneous and 
isotropic material with constant thermophysical and optical 
properties. A unique melt temperature 7” is assumed to 
exist and the liquid phase is maintained at this temperature. 
The surface at x = 0 is considered to be the cold wall at a 
constant temperature Ti with an emissivity sr. The melt 
line has an emissivity s2. No significant change in density 
occurs during solidification. The formulation given here is 
valid for the analogous melting problem with obvious 
modifications only. 

The energy equation for the problem can be written in the 
form 

(1) 

subject to the following conditions 

k; - qr = p2$ atx=s @a) 

T(0, f) = T$ (2b) 
T(s, 2) = T, m 

Integrating equation (1) from x = 0 to x = s using equation 
(2a) results in the following equation referred to as the heat 
balance integral. 

where t3 = [Tdx. (4) 

If we let the temperature T be represented by a second degree 
polynomial, then three conditions are necessary to ftnd 
the constants. Equations (2b) and (2~) are two conditions 
and the third one is essentially equation (2a). But equation 
(2a) in its present form is not suitable because the coefti- 
cients in the polynomial would involve ds/dr. In turn, the 
heat balance integral, equation (3) would involve second 
order derivatives for s(r) whereas there is only one initial 
condition for s, namely s(0) = 0. To avoid this difftculty 
we differentiate equation (2~) with respect to time 
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or 

aTds dT 
--. 
dx dt 

+z=o 

ds ?T,@t 

dt irTliiX 

If we substitute (5b) in (2a) we obtain 

(5a) 

(5b) 

(6) 

From the differential equation for the problem, equation 

(1) we substitute for dT/at in equation (6) and obtain the 

third required condition as 

If we represent the temperature distribution in the following 

form 

Tz - T = A(.x - \) + B(u - s)j (8) 

then using equation (2b) and equation (7). ii and B are 

determined from the following expressions 

* _ 6 - J(SZ -I- 4a) 
1 

Equation (16) in the absence of radiation yields the following 

closed form solution presented in [ 11. 

s = w \: I (17) 

where 

and 

(IO) 

and 

Equations (3) (4) and (7) require that the radiative heat 

flux* with its special and time derivatives be taken at x = 0 

and at x = s. Performing these operations results in the 

following integral expression for the propagation of the 

solid-liquid interface with time. 

tz 
s 

(16) 0 

We note that the expressions for A and B as given by equa- 

tion (9) and (10) reduces to those given by Goodman [l] if 

the radiation contribution is set equal to zero. 

The radiative heatflux 

The radiative heat flux for a gray non-scattering medium 

and for diffuse emission and reflection is given by [4, 51 

4,. r = 27rC,E,(T) - 27-c C*& (To - r) 

+ 2n20 fiT%) Ez (T - t) dt 

- 2n’a j:oT4(t) E, (t - T) dt 

where 

(13) 

c, = --.r + 2p, E,(t,) c, 

20Ty,nZ I0 
+-- 

i 
T4(t) E,(t) dt (14) 

n 0 

g zz (J3) -v I I -(I +/I)‘+/, 1 
_.____.~~~ 
5+(1 +pY f/l 1 (18) 

The solution to equation (16) requires that the radiative 

heat flux and its derivatives be determined first. That 

involves integration over the temperature distribution in 

the solid which is unknown a priori and demands values for 

A and B that reflect the effect of the radiative transport at 

each value of s. The method of successive substitution, then 

was used to determine A and B from equations (9)(12). 

When the difference in the calculated values of A and B 

between two consecutive iterations was within 1 per cent of 

the magnitude of each, the iteration is stopped and the values 

then obtained were considered satisfactory for the particular 

value of s. The method converged to the correct values of 

A and Bvely fast and in most cases did not require more than 

two iterations. With the correct values of A and B and the 

corresponding values for q,, ~ y,, ,, and d/dx [q,], equation 

(16) was, then, integrated numerically to obtain the value of 

time for that chosen s. The method was repeated for each 
prescribed value of s resulting in the desired s vs. t curve and 

in the temperature distribution at each s. 

RESULTS AND CONCLUSIONS 
Figure 1 shows the location of the solid-liquid interface as 

a function of time with and without the effects of radiation 

* In the radiative heat flux the exponential kernel approxi- 
mation was used namely E,(t) z &% 
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FIG. 1. Thickness of solid vs. time. (Tt = 1800 “R, T2 = 2000 “R) 

for three sets of conditions. Results for other thermophysical 
properties behaved in a similar fashion. It can be seen that 

z# 

- ?:‘&I Btu/lbm 
c = 0.20 fftu/t m - F 

2000 - ,” ; pf258 P ft / h 

1900t 

the case of the nonparticipating medium* K = 0 represents 
an upper bound on the solidification rate while the pure 
conduction case (opaque body) represents a lower bound. 
An increase in the radiation absorption in the medium shifts 
the solidification curve towards the pure conduction case. 
In Fig. 2 we see that the radiation phenomena appreciably 
affects the temperature distribution in the solid phase. For 
the present model the tem~rature distribution for a non- 
participating medium is higher than that for a pure conduct- 
ing one. This might seem at first unusual. however, it should 
be emphasized that the solidification rate for K = 0 is much 
higher than that for pure conduction. Increasing the absorp- 
tion in the medium drops the temperature distribution 
ultimately below that of pure conduction. This can be 
attributed to a net radiation loss by the medium to the 
boundary. The propagation rate of the interface and the 
temperature distribution in the solid phase for materials 
with high thermal diffusivities were little affected by the 
radiation contribution. 
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* For a nonparticipating medium the radiative heat 
flux is constant for all values of s and reduces to the case of 
the gray parallel plates. 

, / 
/ /’ 

,i I \sao 05fl 

/‘/, 
‘/’ 

,///” 

,/ J’ 
\ 

c=o 4ff’ _ 

Opaque i/\“ I ///’ 

~ /#’ 

,,/ / 

4’ 

,,/ ,/ 

\ _ 

S=O~e%ft 
)c=I 2ft-’ 

,/ I’ 
- // / ,I’ 

Sn0.I ft 

/s--’ 
/c=F2ft-’ 

_- 
It300 --* * * ’ ‘ ’ * * ‘ 

0 01 02 03 04 05 06 07 0.8 OS IO 

x/s 
FIG. 2. Temperature distribution in the solid. 



2164 SHORTER COMMUNICATIONS 

R. GREW and A. E. KASSEM, Heat transfer in a growing 7. 
vapor film. 2. Agnew. Marh. Phys. 19(S). 824 (1968). 

M. ELMAS, On the solidification of a warm liquid flowing 

T. J. LOVE. Radiutive Heat Transfer. Charles E. Merrill 
over a cold wall, ht. J. Heat Mass Transfer 13. 1060-1062 
(1970). 

(1968). 
E. M. SPARROW and R. D. CESS, Radiation Heat Transjer. 

8. H. S. CARSLAW and J. C. JAEC;AR. Conduction oJHeat irk 

Brooks/Cole (1966). 
Solids. Oxford (1959). 

P. L. CHAMB&, On the dynamics of phase growth. Q, J. 
Mech. Avpl. Math. IX, pt. 2,224-233 (1956). 

1nr.J. Herrr Moss Transfer. Vol. 14,~~ 21642165. Pergamon Press 1971. Printed in Great Bnta,n 

HEAT TRANSFER MECHANISM IN RECIRCULATING WAKES 

JACOB H. MASLNAH 

Chemical Engineering Dept., University of British Columbia, Vancouver, B.C., Canada 

(Received 12 March 1971) 

NOMENCLATURE 

equatorial radius of oblate spheroid : 
thermal capacity : 
local heat transfer coefficient : 
thermal conductivity : 
local Nusselt number = 2 a h/k : 
Prandtl number. c&k : 
Reynolds number = 2 ap V/p : 
normalized local temperature : 
dimensional velocity of the undisturbed fluid at 
infinity : 
dimensionless local velocity = u’jV : 
dimensionless local velocity of the fluid. 

Greek letters 

spheroidal coordinates, angle : 
viscosity : 
spheroidal coordinate orthogonal to n : 
density : 
dimensionless stream function = $‘/aV’ : 
dimensional stream function 

Subscripts 

a, spheroidal surface : 
?3 q- direction : 
5, (- direction. 

THE FLOW of a Newtonian incompressible fluid past an 

oblate spheroid at intermediate Reynolds number ( = IW) IS 

characterized by the appearance of a steady axisymmetric 
recirculating wake which is attached to the downstream side 

of the spheroid, Rimon and Lugt [l] and Masliyah and 

Epstein [2]. 

When the spheroid surface is at a higher temperature than 

the ambient fluid, heat is transferred to the fluid. The role 

of the wake in the heat transfer is best demonstrated by the 

solution of the equations governing the fluid motion and the 

heat transfer. 

The energy equation for forced convection with constant 

fluid properties, in oblate spheroidal coordinates (5, n) is 

dT 8T 2 cash E_ 
“‘F + “VT = 

l” 

Pr Re(cosh’< - sinzn)+ 

The velocity components vg and un are given by the numeri- 

cal solution of the momentum equations for steady axi- 

symmetric flow [2]. The boundary conditions employed are 

T = 1 at the surface of the spheroid (5 = to), T = 0 at 

5 --) co and aT/aq = 0 at n = 0 and n. The solution of the 

energy equation was accomplished by using central finite 

difference equations, Masliyah and Epstein [3]. 

The closed recirculating streamlines inside the wake, 

together with the isotherms, as obtained by the complete 
solution of the motion and energy equations reveal a rather 
interesting mechanism of heat transfer. The fluid in the wake 

enclosed by the streamline II/ = 0 in Fig. 1 does not leave 

the recirculating wake, by definition of a streamline. It 

follows that the heat emanating from that portion of the 

spheroid surface surrounded by the wake is ultimately 

transferred by conduction across the streamline $ = 0. 

A hot element of fluid situated near the surface on one of the 
closed streamlines, say I) = -0.01, loses its heat on its 


